Just as for propositional logic, for predicate logic, a *definite* Horn clause is one that contains exactly one positive atom, i.e., a clause of the form

\[
\forall X_1 \ldots \forall X_n (B_1 \land \ldots \land B_m \rightarrow H)
\]

or

\[
\forall X_1 \ldots \forall X_n (\top \rightarrow H)
\]

where the \(B_i\) and \(H\) are atoms.

A *logic program* is a set of definite Horn Clauses.

A *goal* or *query* is a formula of the form

\[
\exists X_1 \ldots \exists X_n (G_1 \land \ldots \land G_m)
\]

where the \(G_i\) are atoms.
Example: the following set of clauses is a logic program:

1: $\forall X \forall Y (\text{edge}(X,Y) \to \text{path}(X,Y))$
2: $\forall X \forall Y \forall Z (\text{edge}(X,Y) \land \text{path}(Y,Z) \to \text{path}(X,Z))$
3: $\top \to \text{edge}(a,b)$
4: $\top \to \text{edge}(b,c)$

The following are queries:

$$\exists X \exists Y \exists Z (\text{edge}(X,Y) \land \text{path}(X,Y))$$
$$\exists X \exists Y (\text{path}(X,Y))$$

The following logical equivalences hold:

$$\neg \forall X (\phi) \equiv \exists x (\neg \phi)$$
$$\neg \exists X (\phi) \equiv \forall x (\neg \phi)$$

Note that

$$\neg \exists X_1 \ldots \exists X_n (G_1 \land \ldots \land G_n) \equiv \forall X_1 \neg \exists X_2 \ldots \exists X_n (G_1 \land \ldots \land G_n)$$
$$\equiv \forall X_1 \ldots \forall X_n (\neg (G_1 \land \ldots \land G_n))$$
$$\equiv \forall X_1 \ldots \forall X_n ((G_1 \land \ldots \land G_n) \to \bot)$$

Note that if Γ is a logic program, then

$$\Gamma \cup \{\forall X_1 \ldots \forall X_n ((G_1 \land \ldots \land G_n) \to \bot)\}$$

is a set of Horn clauses.
Thus, if Γ is a logic program and $\exists X_1 \ldots \exists X_n (G_1 \land \ldots \land G_n)$ is a goal, then the following are equivalent:

- $\Gamma \models \exists X_1 \ldots \exists X_n (G_1 \land \ldots \land G_m)$
- $\Gamma \cup \{\forall X_1 \ldots \forall X_n ((G_1 \land \ldots \land G_m) \rightarrow \bot)\}$ is unsatisfiable.
- The set of ground instances of $\Gamma \cup \{\forall X_1 \ldots \forall X_n ((G_1 \land \ldots \land G_m) \rightarrow \bot)\}$ is unsatisfiable.
- There exists a ground instance g of $\forall X_1 \ldots \forall X_n ((G_1 \land \ldots \land G_m) \rightarrow \bot)$ such that some branch of the SLD resolution tree for $\Gamma \cup \{g\}$ has the leaf \bot.

Substitutions

A substitution $\theta : V \rightarrow \text{Terms}$ is a mapping from some (possibly empty) set of variables V to the set of terms.

We may represent a substitution by a list of pairs of the form $X \rightarrow t$ indicating that variable X maps to term t.

A substitution θ is ground if for every variable X in the domain V of θ, its value $\theta(X)$ is a ground term.

Examples:
- $[X \rightarrow f(Y,Z,a), \ Y \rightarrow b]$ is a (non-ground) substitution
- $[X \rightarrow a, \ Y \rightarrow b, \ Z \rightarrow f(a)]$ is a ground substitution
- $[]$ or ϵ is the null substitution (this is ground)
If \(\phi \) is a formula and \(\theta \) is a substitution, we may apply \(\theta \) to \(\phi \) by replacing each free occurrence of a variable \(X \) in the domain of \(\theta \) by \(\theta(X) \).

We denote the resulting formula by \(\phi\theta \).

Examples:

\[
p(X,Y,Z)[X \to f(Y), Y \to a] = p(f(Y),a,Z)
\]

\[
(p(X) \land (r(X,Z) \to \forall X(q(X,Y,Z))))[X \to a, Y \to b] = p(a) \land (r(a,Z) \to \forall X(q(X,b,Z)))
\]

Note:

- We do the substitution for all variables at the same time, not one after the other. (If we did \(X \) before \(Y \) in the first example we would get \(p(f(a),a,Z) \))

- Variables not in the domain of the substitution (e.g. \(Z \) in the examples above) are left unchanged.
Important Fact: If Γ is a logic program and
$\exists X_1 \ldots \exists X_n (G_1 \land \ldots \land G_n)$ is a goal, then
$$\Gamma \models \exists X_1 \ldots \exists X_n (G_1 \land \ldots \land G_n)$$
if and only if there exists a ground substitution
$[X_1 \rightarrow t_1, \ldots, X_n \rightarrow t_n]$ such that
$$\Gamma \models (G_1 \land \ldots \land G_n)[X_1 \rightarrow t_1, \ldots, X_n \rightarrow t_n].$$
A substitution $[X_1 \rightarrow t_1, \ldots, X_n \rightarrow t_n]$ satisfying the condition above is called an *answer substitution* for the query.

Thus, not only can we ask “does the goal follow from Γ?” we can also ask “if the goal follows from Γ, what values of $X_1 \ldots X_n$ make this true?”

Note: answer substitutions are not guaranteed to exist when Γ is not a logic program:
$$P(a) \lor P(b) \models \exists X (P(X))$$
but neither $P(a) \lor P(b) \models P(a)$ nor $P(a) \lor P(b) \models P(b)$.
Prolog Syntactic Conventions

- Variables are in upper case.
- Constants and predicates are in lower case.
- Each formula is terminated by a period: “.”
- The clause $\forall X_1, \ldots, \forall X_n (B_1 \land \ldots \land B_n \landarrow H)$ is written

 \[H : \neg B_1, \ldots, B_n. \]
- The clause $\forall X_1, \ldots, \forall X_n (\top \landarrow H)$ is written

 \[H. \]
- A query $\exists X_1, \ldots, \exists X_n (G_1 \land \ldots \land G_n)$ is written

 \[G_1, \ldots, G_n? \]

The example as a Prolog program:

```prolog
edge(a, b).
edge(b, c).

path(X, Y) : - edge(X, Y).
path(X, Z) : - edge(X, Y), path(Y, Z).
```

6
Running iprolog

- Create a file “filename.pl” containing the logic program. Don’t forget the dots at the end of each clause!
- Start the prolog interpreter running by “prolog” or “iprolog”. The prompt is “:”. (If you see “>” it means the command being input is not yet complete.)
- Load the program using the query “consult(‘filename.pl’)!”.
 Use “listing!” to see the logic program currently loaded.
- Enter a query (e.g. “path(X,Y)?”). The system returns a set of answer substitutions.
- Exit the system using Control-D.