Substitutions

Recall that a substitution is a mapping θ from some set of variables to the set of terms (not necessarily ground). We represent substitutions by a tuple

$$\theta = [X_1 \mapsto t_1, \ldots, X_n \mapsto t_n]$$

which indicates that each variable X_i is mapped to the term t_i by the substitution θ.
Given a formula or term A, the result of applying the substitution to A, written $A\theta$ is obtained by simultaneously replacing each free occurrence in A of a variable X in the domain of θ by the term $\theta(X)$.

Examples:
1. $\text{father}(X)[X \mapsto \text{mother}(Y), Y \mapsto \text{joe}] = \text{father}(\text{mother}(Y))$
2. $\text{parent}(\text{father}(X), Y)[X \mapsto \text{mother}(Y), Y \mapsto \text{joe}] = \text{parent}(\text{father}(\text{mother}(Y)), \text{joe})$

The operation of applying a substitution can be repeated. Suppose θ_1 and θ_2 are two substitutions. We write $A\theta_1\theta_2$ for $(A\theta_1)\theta_2$, i.e., the result of first applying θ_1 and then θ_2.

Example:
If $\theta_1 = [X \mapsto f(X), Y \mapsto g(a, T), Z \mapsto b]$ and $\theta_2 = [X \mapsto a, Y \mapsto b, V \mapsto X]$ then
$$p(U, V, W, X, Y, Z)\theta_1\theta_2 = p(U, V, W, f(X), g(a, T), b)\theta_2$$
$$= p(U, X, W, f(a), g(a, T), b)$$
The composition of two substitutions

- $\theta_1 = [X_1 \mapsto t_1, \ldots, X_m \mapsto t_m]$
- $\theta_2 = [Y_1 \mapsto s_1, \ldots, Y_n \mapsto s_n]$

(where the variables X_i are not necessarily distinct from the variables Y_j) is the substitution $\theta_1 \circ \theta_2$ obtained from the tuple

$[X_1 \mapsto t_1 \theta_2, \; X_2 \mapsto t_2 \theta_2, \ldots, X_m \mapsto t_m \theta_2, \; Y_1 \mapsto s_1, \; \ldots, Y_n \mapsto s_n]$

by deleting each pair “$Y_i \mapsto s_i$” for which Y_i is one of the variables X_1, \ldots, X_m.

Example:

If $\theta_1 = [X \mapsto f(X), \; Y \mapsto g(a, T), \; Z \mapsto b]$ and $\theta_2 = [X \mapsto a, \; Y \mapsto b, \; V \mapsto X]$ then

$$\theta_1 \circ \theta_2 = [X \mapsto f(a), \; Y \mapsto g(a, T), \; Z \mapsto b, \; V \mapsto X]$$
Proposition: For any atom or formula A, we have

$$A(\theta_1 \circ \theta_2) = A\theta_1 \theta_2$$

i.e. the result of applying the composition $\theta_1 \circ \theta_2$ is the same as the result of applying first θ_1 and then θ_2 to A.

Example:

For the substitutions θ_1 and θ_2 in the example above we determined that $\theta_1 \circ \theta_2 = [X \mapsto f(a), \ Y \mapsto g(a, T), \ Z \mapsto b, \ V \mapsto X]$. Note that

$$p(U, V, W, X, Y, Z)[X \mapsto f(a), \ Y \mapsto g(a, T), \ Z \mapsto b, \ V \mapsto X]$$

$$= p(U, X, W, f(a), g(a, T), b)$$

which is the same as the result of $p(U, V, W, X, Y, Z)\theta_1 \theta_2$ obtained above.
Intuitively, the definition of the composition is designed to make the proposition true. The definition does the right thing for this because any occurrence of a variable X_i in A will be mapped first to t_i by θ_1. Then we apply θ_2 to the result, producing the subterm $t_i\theta_2$. For occurrences of Y_i in A there are two cases:

1. if Y_i is X_j then Y_i is replaced by t_j when applying θ_1: we then apply θ_2 to the result, producing $t_j\theta_2$;
2. if Y_i is not one of the variables X_j then each occurrence of Y_i in A is unchanged by applying θ_1. Then when we apply θ_2, the occurrence of Y_i will be replaced by s_i.

Remarks:

1. Substituting a variable for itself changes nothing, so

 \[
 [X \mapsto X, \ Y_1 \mapsto t_1, \ldots, Y_n \mapsto t_n] = [Y_1 \mapsto t_1, \ldots, Y_n \mapsto t_n]
 \]

2. The empty substitution $\epsilon = []$ changes nothing, so

 $\epsilon \circ \theta = \theta \circ \epsilon = \theta$

 for all substitutions θ.

3. Composition of substitutions is associative:

 $\theta_1 \circ (\theta_2 \circ \theta_3) = (\theta_1 \circ \theta_2) \circ \theta_3$
We can now address the question of how to “match” literals when doing “resolution with variables”.

Suppose we want to match a ground instance of the clause
\[p(X, f(X), a). \]
and a ground instance of the goal
\[\bot : \neg p(g(Y), Z, T). \]
so that we can produce the resolvent \(\bot \).

Then we need to find values to substitute for the variables \(X, Y, Z \) that make these two atoms equal. We need to have
\[X = g(Y), \quad f(X) = Z, \quad a = T. \]

One substitution that satisfies these constraints is
\[\theta = [X \mapsto g(a), \ Y \mapsto a, \ Z \mapsto f(g(a)), \ T \mapsto a], \]
for
\[p(X, f(X), a)\theta = p(g(a), f(g(a)), a) = p(g(Y), Z, T)\theta \]

But there is a “more general” solution,
\[\theta = [X \mapsto g(U), \ Y \mapsto U, \ Z \mapsto f(g(U)), \ T \mapsto a], \]
for which
\[p(X, f(X), a)\theta = p(g(U), f(g(U)), a) = p(g(Y), Z, T)\theta \]
(Here \(U \) is a variable, which possibly denotes \(a \).)
Sometimes there is no way to substitute values so as to match two atoms.

Examples:

1. There is no substitution \(\theta \) such that

\[
p(f(X), g(a))\theta = p(Z, Z)\theta
\]

for we would need to have \(Z\theta = f(X\theta) = g(a) \) whereas the latter two terms cannot be equal, whatever \(\theta \) is.

2. There is no substitution \(\theta \) such that

\[
p(f(X), X)\theta = p(Z, Z)\theta
\]

for we would need to have \(Z\theta = f(X\theta) = X\theta \) whereas the latter two terms cannot be equal, whatever \(\theta \) is, since \(f(X\theta) \) will have three more symbols ("f", "(" and ")") than \(X\theta \).

Definition: Let \(S = \{E_1, \ldots, E_n\} \) be a set of expressions (i.e., terms or atoms). A *unifier* for \(S \) is a substitution \(\theta \) such that

\[
E_1\theta = E_2\theta = \ldots = E_n\theta
\]

If a unifier exists, we say that \(S \) is *unifiable*.

Examples:

1. \(\{p(X), q(Y)\} \) is *not* unifiable
2. \(\{p(f(g(X), Y)), p(f(h(X), Z))\} \) is *not* unifiable
3. \(\{f(X), X\} \) is *not* unifiable
The following are all unifiers for $S = \{p(X), \ p(Y)\}$

1. $[X \mapsto f(a), \ Y \mapsto f(a)]$
2. $[X \mapsto Y]$
3. $[X \mapsto T, \ Y \mapsto T]$

Definition: A substitution θ_1 is as at least as general as a substitution θ_2 if there exists a substitution σ such that $\theta_2 = \theta_1 \circ \sigma$.

Definition: A most general unifier (m.g.u.) of a set S of expressions is a unifier θ of S that is at least as general as any other unifier.
Example: Consider $S = \{ p(X), p(Y) \}$.

$\theta_1 = [X \mapsto Y]$ can be shown to be a most general unifier. Let’s consider some other unifiers...

1. $\theta_2 = [X \mapsto a, \ Y \mapsto a]$ is a unifier and if we take $\sigma = [Y \mapsto a]$ then

 $\theta_1 \circ \sigma = [X \mapsto a, \ Y \mapsto a] = \theta_2$

 so θ_1 is at least as general as θ_2.

2. $\theta_2 = [Y \mapsto X]$ is a unifier and if we take $\sigma = [Y \mapsto X]$ then

 $\theta_1 \circ \sigma = [X \mapsto X, \ Y \mapsto X] = [Y \mapsto X] = \theta_2$

 so θ_1 is at least as general as θ_2.

Computing a most general unifier:

Definition: The disagreement set of a set S of expressions is obtained by locating the leftmost position at which not all expressions in S have the same symbol, and placing in D all the subexpressions starting at that position.

Example: if

\[
S = \{ q(f(X), g(X), a), \\
q(f(X), g(X), b), \\
q(f(X), g(h(T)), a) \}
\]

then $D = \{ X, h(T) \}$
Unification algorithm

1. Put \(k = 0 \) and \(\theta_0 = \epsilon \) (the empty substitution)

2. If \(S\theta_k \) is a singleton set
 then halt: \(\theta_k \) is the m.g.u. of \(S \).

3. Compute the disagreement set \(D_k \) of \(S\theta_k \)

4. If there exist terms \(v \) and \(t \) in \(D_k \) such that
 (a) \(v \) is a variable
 (b) \(v \) does not occur in \(t \) ("occurs check")
 then
 (a) put \(\theta_{k+1} := \theta_k \circ [v \mapsto t] \)
 (b) \(k := k + 1 \)
 (c) go to to step 2
 else halt: \(S \) is not unifiable