COMP2411 Tutorial 2

1. Using truth tables, complete the problems from lectures 3 and 4:

 (a) Does \(S \rightarrow (A \lor F), (A \land D) \rightarrow S, F \rightarrow S \models (S \land \neg F) \rightarrow A \)?

 (b) Does \(S \rightarrow (A \lor F), (A \land D) \rightarrow S \models F \rightarrow S \)?

 (c) Does \(S \rightarrow (A \lor F), (A \land D) \rightarrow S, F \rightarrow S \models D \rightarrow (S \leftrightarrow (A \lor F)) \)?

 (Observe that you can do all three problems just by adding columns to the one table.)

2. Natural Deduction problems from the textbook: Exercises 1.4: Q1, 2a-f.

Advanced Questions

1. Show that validity of a formula does not depend on the set of propositions we use to construct the truth table. More precisely, let \(\phi \) be a formula and let \(S \) be the set of propositional constants occurring in \(\phi \). Let \(S' \) be any larger set of propositional constants, i.e., let \(S \subseteq S' \). Show that \(\phi \) is true in every line of the truth table in which the rows correspond to all ways of assigning a truth value to the constants \(S \) iff \(\phi \) is true in every line of the truth table in which the rows correspond to all ways of assigning a truth value to the constants \(S' \).

2. Show that validity of formulae is preserved under substitution: Let \(\phi(p) \) be any formula containing the propositional constant \(p \) (possibly more than once) and let \(\alpha \) be any formula. Show that if \(\phi(p) \) is valid then so is \(\phi(\alpha) \).